数据结构与算法,面试[计数排序]相关问题

排序,面试中,问的比较多。


时间复杂度为O(n)的排序,除了基数排序(Radix Sort),还有计数排序(Counting Sort)。今天,1分钟,通过几幅图,争取让大家搞懂计数排序。


计数排序的适用范围?

待排序的元素在某一个范围[MIN, MAX]之间。

画外音:很多业务场景是符合这一场景,例如uint32的数字排序位于[0, 2^32]之间。


计数排序的空间复杂度?

计数排序需要一个辅助空间,空间大小为O(MAX-MIN),用来存储所有元素出现次数(“计数”)。

画外音:计数排序的核心是,空间换时间。


计数排序的关键步骤?

步骤一:扫描待排序数据arr[N],使用计数数组counting[MAX-MIN],对每一个arr[N]中出现的元素进行计数;

步骤二:扫描计数数组counting[],还原arr[N],排序结束;


举个栗子

假设待排序的数组,

arr={5, 3, 7, 1, 8, 2, 9, 4, 7, 2, 6, 6, 2, 6, 6}

很容易发现,待排序的元素在[0, 10]之间,可以用counting[0,10]来存储计数。


第一步:统计计数


扫描未排序的数组arr[N],对每一个出现的元素进行计数。


扫描完毕后,计数数组counting[0, 10]会变成上图中的样子,如粉色示意,6这个元素在arr[N]中出现了4次,在counting[0, 10]中,下标为6的位置计数是4


第二步:还原数组


扫描计数数组counting[0, 10],通过每个元素的计数,还原arr[N]。


如上图粉色示意,count[0, 10]下标为6的位置计数是4,排完序是4个连续的6

从counting下标MIN到MAX,逐个还原,填满arr[N]时,排序结束。


神奇不神奇!!!


计数排序(Counting Sort),总结:

  • 计数排序,时间复杂度为O(n);

  • 当待排序元素个数很多,但值域范围很窄时,计数排序是很节省空间的;


希望这一分钟,大家有收获。




转载自公众号:架构师之路,若有侵权,请联系作者进行删除.

  IT.互联网   技术

作者  :  顾新觉

和顾新觉一起打破职场焦虑




小程序

面试一点通

创作中心

分享职场知识、帮助到更多的人

最新发布